首页> 外文期刊>Design & Test of Computers, IEEE >Training Large-scale Artificial Neural Networks on Simulated Resistive Crossbar Arrays
【24h】

Training Large-scale Artificial Neural Networks on Simulated Resistive Crossbar Arrays

机译:在模拟电阻横杆阵列上训练大规模人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

Resistive crossbar arrays are promising options for accelerating enormous computation needed for training modern deep neural networks (DNNs). However, verification of this idea has not been scaled up to realistically sized DNNs due to the nonideal device behavior and hardware design constraints. In this article, the authors propose a novel simulation framework to explore such design constraints on the large-scale problems and devise algorithmic measures to pave the way for robust resistive crossbar-based DNN training accelerators. -Jungwook Choi, IBM Research
机译:电阻横杆阵列是加快培训现代深度神经网络(DNN)所需的巨大计算的有希望的选择。然而,由于非抗性设备行为和硬件设计约束,验证该想法尚未扩大到现实大小的DNN。在本文中,作者提出了一种新的模拟框架,探讨了大规模问题的这种设计限制,并为基于强大的电阻横杆的DNN训练加速器铺平了道路。 -Jungwook Choi,IBM Research

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号