首页> 外文期刊>Decision support systems >Would you please like my tweet?! An artificially intelligent, generative probabilistic, and econometric based system design for popularity-driven tweet content generation
【24h】

Would you please like my tweet?! An artificially intelligent, generative probabilistic, and econometric based system design for popularity-driven tweet content generation

机译:你喜欢我的推文吗?!一种人造智能,生成的概率和基于经济学的受欢迎程度推文内容生成的系统设计

获取原文
获取原文并翻译 | 示例

摘要

An understudied area in the field of social media research is the design of decision support systems that can aid the manager by way of automated message component generation. Recent advances in this form of artificial intelligence has been suggested to allow content creators and managers to transcend their tasks from creation towards editing, thus overcoming a common problem: the tyranny of the blank screen. In this research, we address this topic by proposing a novel system design that will suggest engagement-driven message features as well as automatically generate critical and fully written unique Tweet message components for the goal of maximizing the probability of relatively high engagement levels. Our multi-methods design relies on the use of econometrics, machine learning, and Bayesian statistics, all of which are widely used in the emerging fields of Business and Marketing Analytics. Our system design is intended to analyze Tweet messages for the purpose of generating the most critical components and structure of Tweets. We propose econometric models to judge the quality of written Tweets by way of engagement-level prediction, as well as a generative probability model for the auto-generation of Tweet messages. Testing of our design demonstrates the need to take into account the contextual, semantic, and syntactic features of messages, while controlling for individual user characteristics, so that generated Tweet components and structure maximizes the potential engagement levels.
机译:社交媒体研究领域的一个被解读的区域是决策支持系统的设计,可以通过自动化消息组件生成帮助管理者。已经提出了这种形式的人工智能形式的最新进展,允许内容创作者和管理者将其从创建转向编辑的任务,从而克服普通问题:空白屏幕的暴政。在这项研究中,我们通过提出一种新颖的系统设计来解决这一主题,该主题将建议接触驱动的消息功能,并自动生成关键和完全写的独特推文消息组件,以实现相对高的接合级别的概率。我们的多种方法设计依赖于使用经济学,机器学习和贝叶斯统计数据,所有这些都广泛用于新兴商业和营销分析领域。我们的系统设计旨在分析推文消息,以便生成推文最关键的组件和结构。我们提出了经济学模型来通过接触级预测来判断书面推文的质量,以及用于自动生成发布消息的生成概率模型。我们的设计测试演示了需要考虑消息的上下文,语义和句法特征,同时控制各个用户特征,因此产生的推文组件和结构最大化潜在的接合水平。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号