首页> 外文期刊>Decision support systems >Can big data improve firm decision quality? The role of data quality and data diagnosticity
【24h】

Can big data improve firm decision quality? The role of data quality and data diagnosticity

机译:大数据能否提高公司的决策质量?数据质量和数据诊断性的作用

获取原文
获取原文并翻译 | 示例

摘要

Anecdotal evidence suggests that, despite the large variety of data, the huge volume of generated data, and the fast velocity of obtaining data (i.e., big data), quality of big data is far from perfect. Therefore, many firms defer collecting and integrating big data as they have concerns regarding the impact of utilizing big data on data diagnosticity (i.e., retrieval of valuable information from data) and firm decision making quality. In this study, we use the Organizational Learning Theory and Wang and Strong's data quality framework to explore the impact of processing big data on firm decision quality and the mediating role of data quality (DQ) and data diagnosticity on this relationship. We validate the proposed research model using survey data from 130 firms, obtained from data analysts and IT managers. Results confirm the critical role of DQ in increasing data diagnosticity and improving firm decision quality when processing big data; suggesting important implications for practice and theory. Findings also reveal that while big data utilization positively impacts contextual DQ, accessibility DQ, and representational DQ, interestingly, it negatively impacts intrinsic DQ. Furthermore, findings show that while intrinsic DQ, contextual DQ, and representational DQ significantly increase data diagnosticity, accessibility DQ does not influence it. Most importantly, the findings show that big data utilization does not significantly impact the quality of firm decisions and it is fully mediated through DQ and data diagnosticity. The results of this study contribute to practice by providing important guidelines for managers to improve firm decision quality through the use of big data.
机译:轶事证据表明,尽管数据种类繁多,生成的数据量巨大,而且获取数据(即大数据)的速度很快,但大数据的质量仍远非完美。因此,许多公司由于担心利用大数据对数据诊断(即从数据中检索有价值的信息)和公司决策质量的影响而推迟收集和集成大数据。在这项研究中,我们使用组织学习理论和Wang and Strong的数据质量框架来探讨处理大数据对公司决策质量的影响以及数据质量(DQ)和数据诊断在这种关系上的中介作用。我们使用来自130家公司的调查数据(从数据分析师和IT经理那里获得)来验证所提出的研究模型。结果证实了DQ在处理大数据时在提高数据诊断能力和改善公司决策质量方面的关键作用;建议对实践和理论有重要意义。研究结果还表明,尽管大数据利用率对上下文DQ,可访问性DQ和表示性DQ有正面影响,但有趣的是,它对固有DQ有负面影响。此外,研究结果表明,虽然固有DQ,上下文DQ和代表性DQ显着提高了数据诊断能力,但可访问性DQ却不影响它。最重要的是,研究结果表明,大数据利用不会显着影响公司决策的质量,并且完全通过DQ和数据诊断来进行调节。这项研究的结果通过为管理人员提供重要指导,以通过使用大数据提高公司决策质量而为实践做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号