首页> 外文期刊>Decision support systems >The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature
【24h】

The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature

机译:数据挖掘技术在金融欺诈检测中的应用:分类框架和文献综述

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a review of - and classification scheme for - the literature on the application of data mining techniques for the detection of financial fraud. Although financial fraud detection (FFD) is an emerging topic of great importance, a comprehensive literature review of the subject has yet to be carried out. This paper thus represents the first systematic, identifiable and comprehensive academic literature review of the data mining techniques that have been applied to FFD. 49 journal articles on the subject published between 1997 and 2008 was analyzed and classified into four categories of financial fraud (bank fraud, insurance fraud, securities and commodities fraud, and other related financial fraud) and six classes of data mining techniques (classification, regression, clustering, prediction, outlier detection, and visualization). The findings of this review clearly show that data mining techniques have been applied most extensively to the detection of insurance fraud, although corporate fraud and credit card fraud have also attracted a great deal of attention in recent years. In contrast, we find a distinct lack of research on mortgage fraud, money laundering, and securities and commodities fraud. The main data mining techniques used for FFD are logistic models, neural networks, the Bayesian belief network, and decision trees, all of which provide primary solutions to the problems inherent in the detection and classification of fraudulent data. This paper also addresses the gaps between FFD and the needs of the industry to encourage additional research on neglected topics, and concludes with several suggestions for further FFD research.
机译:本文介绍了有关数据挖掘技术在检测金融欺诈中的应用的文献综述和分类方案。尽管金融欺诈检测(FFD)是一个非常重要的新兴主题,但是尚未对该主题进行全面的文献综述。因此,本文代表了对已应用于FFD的数据挖掘技术的首次系统,可识别和全面的学术文献综述。分析了1997年至2008年之间发表的有关该主题的49篇期刊文章,并将其分为四类金融欺诈(银行欺诈,保险欺诈,证券和商品欺诈以及其他相关的金融欺诈)和六类数据挖掘技术(分类,回归,聚类,预测,离群值检测和可视化)。这次审查的结果清楚地表明,尽管公司欺诈和信用卡欺诈近年来也引起了广泛关注,但数据挖掘技术已被最广泛地用于检测保险欺诈。相比之下,我们发现对抵押欺诈,洗钱以及证券和商品欺诈的研究非常缺乏。用于FFD的主要数据挖掘技术是逻辑模型,神经网络,贝叶斯信念网络和决策树,所有这些技术都为欺诈数据的检测和分类中固有的问题提供了主要解决方案。本文还解决了FFD与行业需求之间的差距,以鼓励人们对被忽略的话题进行更多研究,并在结论中提出了进一步FFD研究的一些建议。

著录项

  • 来源
    《Decision support systems》 |2011年第3期|p.559-569|共11页
  • 作者单位

    Department of Management and Marketing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China;

    Institute of Business Intelligence and Knowledge Discovery, Department of E-commerce, Guangdong University of Foreign Studies, Sun Vat-Sen University, Guangzhou 510006, PR China;

    Department of Management and Marketing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China;

    Institute of Business Intelligence and Knowledge Discovery, Department of E-commerce, Guangdong University of Foreign Studies, Sun Vat-Sen University, Guangzhou 510006, PR China;

    Institute of Business Intelligence and Knowledge Discovery, Department of E-commerce, Guangdong University of Foreign Studies, Sun Vat-Sen University, Guangzhou 510006, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Financial fraud; Fraud detection; Literature review; Data mining; Business intelligence;

    机译:金融欺诈;欺诈检测;文献审查;数据挖掘;商业智能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号