首页> 外文期刊>Decision support systems >Using structure-based data transformation method to improve prediction accuracies for small data sets
【24h】

Using structure-based data transformation method to improve prediction accuracies for small data sets

机译:使用基于结构的数据转换方法提高小数据集的预测准确性

获取原文
获取原文并翻译 | 示例

摘要

Small data set problems have been widely considered in many fields, where increasing the prediction ability is the most important goal. This study considers the data structure to identify new data points in a more precise manner, and is thus able to achieve improved prediction capability. The proposed method, named structure-based data transformation, consists of two steps. The first step is using the density-based spatial clustering of applications with noise (DBSCAN) algorithm to separate data sets into clusters, which generates the number of clusters dynamically. The second step is to build up the data transformation function, in which the new attributes are computed using fuzzy membership functions obtained by the corresponding membership grades in each cluster. Three real cases are selected to compare the proposed forecasting model with the linear regression (LR), backpropagation neural network (BPNN), and support vector machine for regression (SVR) methods. The result show that the structure-based data transformation method has better performance than when using the raw data with regard to the error improving rate, mean square error (MSE), and standard deviation (STD).
机译:小数据集问题已在许多领域被广泛考虑,其中提高预测能力是最重要的目标。这项研究考虑了以更精确的方式识别新数据点的数据结构,从而能够提高预测能力。所提出的名为基于结构的数据转换的方法包括两个步骤。第一步是使用具有噪声的应用程序的基于密度的空间聚类(DBSCAN)算法,将数据集分为多个簇,从而动态生成簇数。第二步是建立数据转换函数,其中使用由每个聚类中相应的隶属度等级获得的模糊隶属度函数来计算新属性。选择了三个实际案例,以将建议的预测模型与线性回归(LR),反向传播神经网络(BPNN)和支持向量机回归(SVR)方法进行比较。结果表明,基于结构的数据转换方法在错误改善率,均方误差(MSE)和标准差(STD)方面比使用原始数据具有更好的性能。

著录项

  • 来源
    《Decision support systems》 |2012年第3期|p.748-756|共9页
  • 作者单位

    Department of Industrial and Information Management, National Cheng Kung University, Taiwan;

    Department of Industrial and Information Management, National Cheng Kung University, Taiwan;

    Department of Industrial and Information Management, National Cheng Kung University, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    manufacturing; small data set; cluster; DBSCAN; SVR;

    机译:制造业;小数据集;簇;DBSCAN;SVR;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号