首页> 外文期刊>Decision support systems >Tracking geographical locations using a geo-aware topic model for analyzing social media data
【24h】

Tracking geographical locations using a geo-aware topic model for analyzing social media data

机译:使用地理感知主题模型跟踪地理位置以分析社交媒体数据

获取原文
获取原文并翻译 | 示例

摘要

Tracking how discussion topics evolve in social media and where these topics are discussed geographically over time has the potential to provide useful information for many different purposes. In crisis management, knowing a specific topic's current geographical location could provide vital information to where, or even which, resources should be allocated. This paper describes an attempt to track online discussions geographically over time. A distributed geo-aware streaming latent Dirichlet allocation model was developed for the purpose of recognizing topics' locations in unstructured text. To evaluate the model it has been implemented and used for automatic discovery and geographical tracking of election topics during parts of the 2016 American presidential primary elections. It was shown that the locations correlated with the actual election locations, and that the model provides a better geolocation classification compared to using a keyword-based approach. (C) 2017 The Authors. Published by Elsevier B.V.
机译:跟踪讨论主题在社交媒体中的演变方式以及随着时间的推移在地理上讨论这些主题的位置有可能为许多不同目的提供有用的信息。在危机管理中,了解特定主题的当前地理位置可以为应在何处或什至应分配哪些资源提供重要信息。本文介绍了一种尝试跟踪一段时间内的在线讨论的尝试。为了识别非结构化文本中主题的位置,开发了分布式地理感知流潜在Dirichlet分配模型。为了评估该模型,该模型已实施并用于2016年美国总统初选部分时间的选举主题的自动发现和地理跟踪。结果表明,这些位置与实际的选举位置相关,并且与使用基于关键字的方法相比,该模型提供了更好的地理位置分类。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号