首页> 外文期刊>Decision support systems >Taxo-Semantics: Assessing similarity between multi-word expressions for extending e-catalogs
【24h】

Taxo-Semantics: Assessing similarity between multi-word expressions for extending e-catalogs

机译:分类语义:评估多词表达之间的相似性以扩展电子目录

获取原文
获取原文并翻译 | 示例

摘要

Taxonomies, also named directories, are utilized in e-catalogs to classify goods in a hierarchical manner with the help of concepts. If there is a need to create new concepts when modifying the taxonomy, the semantic similarity between the provided concepts has to be assessed properly. Existing semantic similarity assessment techniques lack in a comprehensive support for e-commerce, as those are not supporting multi-word expressions, multilingualism, the import/export to relational databases, and supervised user involvement. This paper proposes Taxo-Semantics, a decision support system that is based on the progress in taxonomy matching to match each expression against various sources of background knowledge. The similarity assessment is based on providing three different matching strategies: a lexical-based strategy named Taxo-Semantics-Label, the strategy Taxo-Semantics-Bk, which is using different sources of background knowledge, and the strategy Taxo-Semantics-User that is providing user-involvement. The proposed system includes a translating service to analyze non-English concepts with the help of the WordNet lexicon, can parse taxonomies of relational databases, supports user-involvement to match single sequences with Word Net, and is capable to analyze each sequence as (sub)-taxonomy. The three proposed matching strategies significantly outperformed existing techniques. Taxo-Semantics-Label could improve the accuracy result by more than 7% as compared to state-of-the-art lexical techniques. Taxo-Semantics-Bk could improve the accuracy compared to structure-based techniques by more than 8%. And, Taxo-Semantics-User could additionally increase the accuracy by on average 23%. (C) 2017 Elsevier B.V. All rights reserved.
机译:电子目录中使用分类法(也称为目录)在概念的帮助下以分层方式对商品进行分类。如果在修改分类法时需要创建新概念,则必须正确评估所提供概念之间的语义相似性。现有的语义相似性评估技术缺乏对电子商务的全面支持,因为这些技术不支持多词表达,多语言,关系数据库的导入/导出以及有监督的用户参与。本文提出了分类语义,这是一个决策支持系统,该系统基于分类匹配的进展,以使每个表达式与各种背景知识源相匹配。相似性评估基于提供三种不同的匹配策略:基于词法的名为Taxo-Semantics-Label的策略,使用不同背景知识源的策略Taxo-Semantics-Bk以及策略Taxo-Semantics-User正在提供用户参与度。拟议的系统包括翻译服务,可在WordNet词典的帮助下分析非英语概念,可解析关系数据库的分类法,支持用户参与以将单个序列与Word Net匹配,并能够将每个序列分析为(sub )-分类。提出的三种匹配策略大大优于现有技术。与最先进的词汇技术相比,Taxo-Semantics-Label可以将准确性结果提高超过7%。与基于结构的技术相比,Taxo-Semantics-Bk可以将准确性提高超过8%。并且,Taxo-Semantics-User可以使准确性平均提高23%。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号