首页> 外文期刊>Datenbank-Spektrum >Integrating Cluster-Based Main-Memory Accelerators in Relational Data Warehouse Systems
【24h】

Integrating Cluster-Based Main-Memory Accelerators in Relational Data Warehouse Systems

机译:在关系数据仓库系统中集成基于集群的主内存加速器

获取原文

摘要

Today, data warehouse systems are faced with challenges for providing nearly realtime response times even for complex analytical queries on enormous data volumes. Highly scalable computing clusters in combination with parallel in-memory processing of compressed data are valuable techniques to address these challenges. In this paper, we give an overview on core techniques of the IBM Smart Analytics Optimizer—an accelerator engine for IBM’s mainframe database system DB2 for z/OS. We particularly discuss aspects of a seamless integration between the two worlds and describe techniques exploiting features of modern hardware such as parallel processing, cache utilization, and SIMD. We describe issues encountered during the development and evaluation of our system and outline current research activities for solving them.
机译:如今,数据仓库系统面临着提供几乎实时的响应时间的挑战,即使对于庞大数据量的复杂分析查询也是如此。高度可扩展的计算群集与压缩数据的并行内存中处理相结合,是解决这些挑战的宝贵技术。在本文中,我们概述了IBM Smart Analytics Optimizer的核心技术,该技术是IBM大型机数据库系统DB2 for z / OS的加速器引擎。我们特别讨论了两个世界之间无缝集成的各个方面,并描述了利用现代硬件功能(如并行处理,缓存利用率和SIMD)的技术。我们描述了系统开发和评估过程中遇到的问题,并概述了解决这些问题的当前研究活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号