首页> 外文期刊>Data & Knowledge Engineering >Pattern-growth based frequent serial episode discovery
【24h】

Pattern-growth based frequent serial episode discovery

机译:基于模式增长的频繁序列情节发现

获取原文
获取原文并翻译 | 示例

摘要

Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarm management in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web click streams and so on. In this paper, we address the discovery of serial episodes. In the episodes context, there have been multiple ways to quantify the frequency of an episode. Most of the current algorithms for episode discovery under various frequencies are apriori-based level-wise methods. These methods essentially perform a breadth-first search of the pattern space. However currently there are no depth-first based methods of pattern discovery in the frequent episode framework under many of the frequency definitions. In this paper, we try to bridge this gap. We provide new depth-first based algorithms for serial episode discovery under non-overlapped and total frequencies. Under non-overlapped frequency, we present algorithms that can take care of span constraint and gap constraint on episode occurrences. Under total frequency we present an algorithm that can handle span constraint. We provide proofs of correctness for the proposed algorithms. We demonstrate the effectiveness of the proposed algorithms by extensive simulations. We also give detailed run-time comparisons with the existing apriori-based methods and illustrate scenarios under which the proposed pattern-growth algorithms perform better than their apriori counterparts.
机译:频繁的情节发现是从顺序数据中发现模式的流行框架。它在电信网络中的警报管理,制造工厂中的故障分析,预测Web点击流中的用户行为等领域发现了许多应用。在本文中,我们解决了连续剧集的发现。在情节中,有多种方法可以量化情节的发生频率。当前在各种频率下发现情节的大多数算法是基于先验的逐级方法。这些方法实质上执行模式空间的广度优先搜索。然而,当前在许多频率定义下的频繁事件框架中还没有基于深度优先的模式发现方法。在本文中,我们试图弥合这一差距。我们提供了基于深度优先的新算法,用于在不重叠和总频率下进行连续剧集发现。在非重叠频率下,我们提出了可以解决事件发生时的跨度约束和间隙约束的算法。在总频率下,我们提出了一种可以处理跨度约束的算法。我们为所提出的算法提供正确性证明。我们通过广泛的仿真证明了所提出算法的有效性。我们还与现有的基于先验的方法进行了详细的运行时比较,并说明了所提出的模式增长算法比其先验算法性能更好的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号