首页> 外文期刊>Data & Knowledge Engineering >Extending ER models to capture database transformations to build data sets for data mining
【24h】

Extending ER models to capture database transformations to build data sets for data mining

机译:扩展ER模型以捕获数据库转换以构建用于数据挖掘的数据集

获取原文
获取原文并翻译 | 示例

摘要

In a data mining project developed on a relational database, a significant effort is required to build a data set for analysis. The main reason is that, in general, the database has a collection of normalized tables that must be joined, aggregated and transformed in order to build the required data set. Such scenario results in many complex SQL queries that are written independently from each other, in a disorganized manner. Therefore, the database grows with many tables and views that are not present as entities in the ER model and similar SQL queries are written multiple times, creating problems in database evolution and software maintenance. In this paper, we classify potential database transformations, we extend an ER diagram with entities capturing database transformations and we introduce an algorithm which automates the creation of such extended ER model. We present a case study with a public database illustrating database transformations to build a data set to compute a typical data mining model.
机译:在关系数据库上开发的数据挖掘项目中,需要大量的精力来构建用于分析的数据集。主要原因是,通常,数据库具有标准化表的集合,必须将这些表进行连接,聚合和转换才能构建所需的数据集。这种情况导致许多复杂的SQL查询以混乱的方式彼此独立地编写。因此,数据库会随着许多表和视图一起增长,而这些表和视图在ER模型中并不作为实体出现,并且类似的SQL查询被多次写入,从而在数据库演进和软件维护方面造成了问题。在本文中,我们对潜在的数据库转换进行了分类,我们使用捕获数据库转换的实体扩展了一个ER图,并介绍了一种算法,该算法可以自动创建这种扩展的ER模型。我们以公共数据库为例,说明数据库转换以构建数据集以计算典型的数据挖掘模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号