首页> 外文期刊>Data & Knowledge Engineering >Design of computationally efficient density-based clustering algorithms
【24h】

Design of computationally efficient density-based clustering algorithms

机译:基于密度的高效计算聚类算法设计

获取原文
获取原文并翻译 | 示例

摘要

The basic DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm uses minimum number of input parameters, very effective to cluster large spatial databases but involves more computational complexity. The present paper proposes a new strategy to reduce the computational complexity associated with the DBSCAN by efficiently implementing new merging criteria at the initial stage of evolution of clusters. Further new density based clustering (DBC) algorithms are proposed considering correlation coefficient as similarity measure. These algorithms though computationally not efficient, found to be effective when there is high similarity between patterns of dataset. The computations associated with DBC based on correlation algorithms are reduced with new cluster merging criteria. Test on several synthetic and real datasets demonstrates that these computationally efficient algorithms are comparable in accuracy to the traditional one. An interesting application of the proposed algorithm has been demonstrated to identify the regional hazard regions present in the seismic catalog of Japan.
机译:基本的DBSCAN(基于噪声的基于应用程序的基于空间的空间聚类)算法使用最少数量的输入参数,对于对大型空间数据库进行聚类非常有效,但涉及更多的计算复杂性。本文提出了一种新的策略,可以通过在集群发展的初始阶段有效地实施新的合并标准来降低与DBSCAN相关的计算复杂性。提出了新的基于密度的聚类(DBC)算法,将相关系数作为相似性度量。这些算法虽然在计算上效率不高,但在数据集的模式之间具有高度相似性时发现是有效的。新的集群合并标准减少了基于DBC相关算法的与DBC相关的计算。对多个综合数据集和真实数据集的测试表明,这些计算有效的算法在准确性上可与传统算法相比。已经证明了所提出算法的有趣应用,可用于识别日本地震目录中存在的区域危险区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号