首页> 外文期刊>Data & Knowledge Engineering >Producing relevant interests from social networks by mining users' tagging behaviour: A first step towards adapting social information
【24h】

Producing relevant interests from social networks by mining users' tagging behaviour: A first step towards adapting social information

机译:通过挖掘用户的标记行为从社交网络中产生相关兴趣:适应社交信息的第一步

获取原文
获取原文并翻译 | 示例

摘要

Social media provides an environment of information exchange. They principally rely on their users to create content, to annotate others' content and to make on-line relationships. The user activities reflect his opinions, interests, etc. in this environment. We focus on analysing this social environment to detect user interests which are the key elements for improving adaptation. This choice is motivated by the lack of information in the user profile and the inefficiency of the information issued from methods that analyse the classic user behaviour (e.g. navigation, time spent on web page, etc.). So, having to cope with an incomplete user profile, the user social network can be an important data source to detect user interests. The originality of our approach is based on the proposal of a new technique of interests' detection by analysing the accuracy of the tagging behaviour of a user in order to figure out the tags which really reflect the content of the resources. So, these tags are somehow comprehensible and can avoid tags "ambiguity" usually associated to these social annotations. The approach combines the tag, user and resource in a way that guarantees a relevant interests detection. The proposed approach has been tested and evaluated in the Delicious social database. For the evaluation, we compare the result issued from our approach using the tagging behaviour of the neighbours (the egocentric network and the communities) with the information yet known for the user (his profile). A comparative evaluation with the classical tag-based method of interests detection shows that the proposed approach is better.
机译:社交媒体提供了信息交流的环境。他们主要依靠用户来创建内容,注释他人的内容并建立在线关系。在这种环境下,用户活动反映了他的观点,兴趣等。我们专注于分析这种社会环境以检测用户兴趣,这是改善适应性的关键要素。这种选择是由于用户个人资料中信息的缺乏以及从分析经典用户行为(例如,导航,在网页上花费的时间等)的方法发出的信息的效率低下引起的。因此,必须应对不完整的用户资料,用户社交网络可以成为检测用户兴趣的重要数据源。我们的方法的独创性是基于一项新的兴趣检测技术的建议,该技术通过分析用户标记行为的准确性来找出真正反映资源内容的标记。因此,这些标签在某种程度上是可以理解的,并且可以避免通常与这些社交注释相关联的标签“模糊性”。该方法以确保相关利益检测的方式将标签,用户和资源组合在一起。该提议的方法已经在Delicious社交数据库中进行了测试和评估。为了进行评估,我们将使用邻居(以自我为中心的网络和社区)的标记行为的方法所发出的结果与用户已知的信息(他的个人资料)进行比较。与基于经典标签的兴趣检测方法的比较评估表明,该方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号