首页> 外文期刊>Cybernetics and Systems >Subspace Clustering for Situation Assessment in Aquatic Drones: A Sensitivity Analysis for State-Model Improvement
【24h】

Subspace Clustering for Situation Assessment in Aquatic Drones: A Sensitivity Analysis for State-Model Improvement

机译:水产无人机局势评估子空间集群:国家模型改进的敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose the use of subspace clustering to detect the states of dynamical systems from sequences of observations. In particular, we generate sparse and interpretable models that relate the states of aquatic drones involved in autonomous water monitoring to the properties (e.g., statistical distribution) of data collected by drone sensors. The subspace clustering algorithm used is called SubCMedians. A quantitative experimental analysis is performed to investigate the connections between i) learning parameters and performance, ii) noise in the data and performance. The clustering obtained with this analysis outperforms those generated by previous approaches.
机译:在本文中,我们提出了使用子空间聚类来检测从观察序列中的动态系统状态。特别是,我们生成稀疏和可解释的模型,其与由无人机传感器收集的数据的性质(例如,统计分布)相关的水生无人机状态。使用的子空间聚类算法称为SubcMedians。进行定量实验分析,以研究数据和性能的I)学习参数和性能之间的连接。通过该分析获得的聚类优于先前方法产生的聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号