首页> 外文期刊>Cybernetics, IEEE Transactions on >A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method
【24h】

A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method

机译:基于模糊聚类和格子玻尔兹曼方法的快速鲁棒水平集图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

In the last decades, due to the development of the parallel programming, the lattice Boltzmann method (LBM) has attracted much attention as a fast alternative approach for solving partial differential equations. In this paper, we first designed an energy functional based on the fuzzy $c$ -means objective function which incorporates the bias field that accounts for the intensity inhomogeneity of the real-world image. Using the gradient descent method, we obtained the corresponding level set equation from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is fast, robust against noise, independent to the position of the initial contour, effective in the presence of intensity inhomogeneity, highly parallelizable and can detect objects with or without edges. Experiments on medical and real-world images demonstrate the performance of the proposed method in terms of speed and efficiency.
机译:在过去的几十年中,由于并行编程的发展,格子Boltzmann方法(LBM)作为求解偏微分方程的快速替代方法引起了广泛的关注。在本文中,我们首先设计了一个基于模糊<公式公式类型=“ inline”> $ c $ -表示偏差函数的目标函数的能量函数这说明了真实世界图像的强度不均匀性。使用梯度下降法,我们得到了相应的水平集方程,从中我们根据赵的模型得出了LBM求解器的模糊外力。该方法是快速的,抗噪声的,与初始轮廓的位置无关,在强度不均匀的情况下有效,高度可并行化并且可以检测带有或不带有边缘的物体。在医学和真实世界图像上的实验从速度和效率方面证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号