首页> 外文期刊>Cybernetics, IEEE Transactions on >A New Kind of Nonparametric Test for Statistical Comparison of Multiple Classifiers Over Multiple Datasets
【24h】

A New Kind of Nonparametric Test for Statistical Comparison of Multiple Classifiers Over Multiple Datasets

机译:一种用于对多个数据集上的多个分类器进行统计比较的新型非参数检验

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric statistical analysis, such as the Friedman test (FT), is gaining more and more attention due to its useful applications in a lot of experimental studies. However, traditional FT for the comparison of multiple learning algorithms on different datasets adopts the naive ranking approach. The ranking is based on the average accuracy values obtained by the set of learning algorithms on the datasets, which neither considers the differences of the results obtained by the learning algorithms on each dataset nor takes into account the performance of the learning algorithms in each run. In this paper, we will first propose three kinds of ranking approaches, which are the weighted ranking approach, the global ranking approach (GRA), and the weighted GRA. Then, a theoretical analysis is performed to explore the properties of the proposed ranking approaches. Next, a set of the modified FTs based on the proposed ranking approaches are designed for the comparison of the learning algorithms. Finally, the modified FTs are evaluated through six classifier ensemble approaches on 34 real-world datasets. The experiments show the effectiveness of the modified FTs.
机译:非参数统计分析,例如弗里德曼检验(FT),由于其在许多实验研究中的有用应用而受到越来越多的关注。然而,用于比较不同数据集上的多种学习算法的传统FT采用的是幼稚的排名方法。排名基于数据集上的一组学习算法所获得的平均准确性值,该平均准确性值既未考虑各数据集上的学习算法所获得的结果的差异,也未考虑每次运行中学习算法的性能。在本文中,我们将首先提出三种排序方法,即加权排序方法,全局排序方法(GRA)和加权GRA。然后,进行理论分析以探索所提出的排序方法的性质。接下来,基于所提出的排序方法的一组修改的FT被设计用于学习算法的比较。最后,通过六种分类器集成方法对34个实际数据集进行评估,以评估修改后的FT。实验证明了改进的FT的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号