首页> 外文期刊>Cybernetics, IEEE Transactions on >Deep Network Embedding for Graph Representation Learning in Signed Networks
【24h】

Deep Network Embedding for Graph Representation Learning in Signed Networks

机译:在签名网络中嵌入图形表示学习的深网络

获取原文
获取原文并翻译 | 示例

摘要

Network embedding has attracted an increasing attention over the past few years. As an effective approach to solve graph mining problems, network embedding aims to learn a low-dimensional feature vector representation for each node of a given network. The vast majority of existing network embedding algorithms, however, are only designed for unsigned networks, and the signed networks containing both positive and negative links, have pretty distinct properties from the unsigned counterpart. In this paper, we propose a deep network embedding model to learn the low-dimensional node vector representations with structural balance preservation for the signed networks. The model employs a semisupervised stacked auto-encoder to reconstruct the adjacency connections of a given signed network. As the adjacency connections are overwhelmingly positive in the real-world signed networks, we impose a larger penalty to make the auto-encoder focus more on reconstructing the scarce negative links than the abundant positive links. In addition, to preserve the structural balance property of signed networks, we design the pairwise constraints to make the positively connected nodes much closer than the negatively connected nodes in the embedding space. Based on the network representations learned by the proposed model, we conduct link sign prediction and community detection in signed networks. Extensive experimental results in real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art network embedding algorithms for graph representation learning in signed networks.
机译:网络嵌入在过去几年中引起了越来越多的关注。作为解决图形挖掘问题的有效方法,网络嵌入旨在为给定网络的每个节点学习低维特征向量表示。然而,绝大多数现有的网络嵌入算法仅针对无符号网络设计,以及包含正负链路的符号网络,具有来自无符号对应物的漂亮性质。在本文中,我们提出了一个深度网络嵌入模型,以了解具有签名网络的结构平衡保存的低维节点向量表示。该模型采用半熟的堆叠自动编码器来重建给定签名网络的邻接连接。随着邻接连接在真实签名的网络中的压倒性地是肯定的,我们强加更大的惩罚,使自动编码器更多地关注重建稀缺的负链接而不是丰富的正极链接。此外,为了保留签名网络的结构平衡特性,我们设计了成对约束,使正连接的节点比嵌入空间中的带负连接的节点更接近。基于所提出的模型学到的网络表示,我们在签名网络中进行链接标志预测和社区检测。实际数据集的广泛实验结果证明了在签名网络中的图形表示学习的最先进的网络嵌入算法中提出的模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号