首页> 外文期刊>Cybernetics, IEEE Transactions on >SCN: Switchable Context Network for Semantic Segmentation of RGB-D Images
【24h】

SCN: Switchable Context Network for Semantic Segmentation of RGB-D Images

机译:SCN:RGB-D图像的语义分割的可切换上下文网络

获取原文
获取原文并翻译 | 示例

摘要

Context representations have been widely used to profit semantic image segmentation. The emergence of depth data provides additional information to construct more discriminating context representations. Depth data preserves the geometric relationship of objects in a scene, which is generally hard to be inferred from RGB images. While deep convolutional neural networks (CNNs) have been successful in solving semantic segmentation, we encounter the problem of optimizing CNN training for the informative context using depth data to enhance the segmentation accuracy. In this paper, we present a novel switchable context network (SCN) to facilitate semantic segmentation of RGB-D images. Depth data is used to identify objects existing in multiple image regions. The network analyzes the information in the image regions to identify different characteristics, which are then used selectively through switching network branches. With the content extracted from the inherent image structure, we are able to generate effective context representations that are aware of both image structures and object relationships, leading to a more coherent learning of semantic segmentation network. We demonstrate that our SCN outperforms state-of-the-art methods on two public datasets.
机译:上下文表示已被广泛用于利润语义图像分割。深度数据的出现提供了额外的信息,以构建更多辨别的上下文表示。深度数据保留场景中对象的几何关系,这通常很难从RGB图像推断出来。虽然深度卷积神经网络(CNNS)在解决语义分割方面取得了成功,但我们遇到了利用深度数据优化信息培训的问题,以增强分割精度。在本文中,我们提出了一种新型可切换的上下文网络(SCN),以便于RGB-D图像的语义分割。深度数据用于识别多个图像区域中存在的对象。网络分析图像区域中的信息以识别不同的特性,然后通过切换网络分支选择性地使用。利用从固有图像结构中提取的内容,我们能够生成有效的上下文表示,了解图像结构和对象关系,导致语义分段网络的更加连贯的学习。我们展示了我们的SCN在两个公共数据集上表现出最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号