机译:通过张于张量的偏置非负面潜在分解的时间模式感知QoS预测
Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China|Chinese Acad Sci Chongqing Engn Res Ctr Big Data Applicat Smart Ci Chongqing 400714 Peoples R China|Chinese Acad Sci Chongqing Inst Green & Intelligent Technol Chongqing Key Lab Big Data & Intelligent Comp Chongqing 400714 Peoples R China;
Chinese Acad Sci Chongqing Engn Res Ctr Big Data Applicat Smart Ci Chongqing 400714 Peoples R China|Chinese Acad Sci Chongqing Inst Green & Intelligent Technol Chongqing Key Lab Big Data & Intelligent Comp Chongqing 400714 Peoples R China;
Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China;
Macau Univ Sci & Technol Inst Syst Engn Macau 999078 Peoples R China|New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA;
Quality of service; Hidden Markov models; Data models; Training; Web services; Time factors; Latent factor analysis (LFA); latent factorization of tensor; learning temporal pattern; linear bias (LB); non-negative latent factorization of tensor; non-negativity constraint; quality-of-service (QoS) prediction;
机译:张量模型的动量合并潜在因子分解,用于时间感知QoS丢失数据预测
机译:离散狄利克雷分布的稀疏语言矩阵和超大张量的非负因子分解的块对角法
机译:基于邻居信息非负矩阵分解的Web服务QoS预测
机译:通过非负张量分解的时间QoS感知Web服务建议
机译:集团 凸 正交 非负矩阵 三 分解 与 FC 指纹 应用
机译:检测时间网络的社区结构和活动模式:一种非负张量分解方法
机译:检测时间网络的社区结构和活动模式:非负张量因子分解方法。