首页> 外文期刊>Cryptography and Communications >Counting equivalence classes for monomial rotation symmetric Boolean functions with prime dimension
【24h】

Counting equivalence classes for monomial rotation symmetric Boolean functions with prime dimension

机译:具有素数维的单项旋转对称布尔函数的等价类计数

获取原文
获取原文并翻译 | 示例

摘要

Recently much progress has been made on the old problem of determining the equivalence classes of Boolean functions under permutation of the variables. In this paper we prove an asymptotic formula for the number of equivalence classes under permutation for degree d monomial rotation symmetric (MRS) functions, in the cases where d >= 3 is arbitrary and the number of variables n is a prime. Our counting formula has two main terms and an error term; this is the first instance of such a detailed result for Boolean function equivalence classes which is valid for arbitrary degree and infinitely many n. We also prove an exact formula for the count of the equivalence classes when d = 5; this extends previous work for d = 3 and 4.
机译:最近,在确定在变量置换下确定布尔函数的等价类的老问题上已经取得了很大进展。在本文中,我们证明了当d> = 3为任意且变量n为素数时,度d多项式旋转对称(MRS)函数在置换下的等价类数的渐近公式。我们的计数公式有两个主要项和一个误差项。这是布尔函数对等类的这种详细结果的第一个实例,该类结果对任意次数和无限多个n有效。当d = 5时,我们还证明了等价类计数的精确公式。这扩展了d = 3和4的先前工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号