首页> 外文期刊>Cryptography and Communications >Some new classes of 2-fold optimal or perfect splitting authentication codes
【24h】

Some new classes of 2-fold optimal or perfect splitting authentication codes

机译:一些新类别的2倍最佳或完美拆分身份验证代码

获取原文
获取原文并翻译 | 示例

摘要

Optimal restricted strong partially balanced t-design can be used to construct splitting authentication codes which achieve combinatorial lower bounds or information-theoretic lower bounds. In this paper, we investigate the existence of optimal restricted strong partially balanced 2-designs ORSPBD(v, k x c, 1), and show that there exists an ORSPBD(v, 2 x c, 1) for any positive integer v = v0 (mod 2c(2)) and v(0) is an element of {1 <= x <= 2c(2) : gcd(x, c) = 1 or gcd(x, c) = c} {c(2) + 1 <= x <= (c + 1)(2) : gcd(x, c) = 1 and gcd(x, 2) = 2}. Furthermore, we determine the existence of an ORSPBD(v, k x c, 1) for any integer v >= kc with (k, c) = (2, 4), (2, 5), (3, 2) or for any even integer v >= kc with (k, c) = (4, 2). As their applications, we obtain six new infinite classes of 2-fold optimal or perfect c-splitting authentication codes.
机译:最佳的受限强局部平衡t设计可用于构造可实现组合下界或信息理论下界的拆分认证代码。在本文中,我们研究了最优受限强局部平衡2-designs ORSPBD(v,kxc,1)的存在,并表明存在任何正整数v = v0(mod的ORSPBD(v,2 xc,1) 2c(2))和v(0)是{1 <= x <= 2c(2)的元素:gcd(x,c)= 1或gcd(x,c)= c} {c(2)+ 1 <= x <=(c +1)(2):gcd(x,c)= 1且gcd(x,2)= 2}。此外,对于(k,c)=(2,4),(2,5),(3,2)的任何整数v> = kc,我们确定存在ORSPBD(v,kxc,1)偶数v> = kc且(k,c)=(4,2)。作为它们的应用,我们获得了6种2倍最佳或完美c拆分身份验证代码的新无限类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号