首页> 外文期刊>Cryptography and Communications >How to fool a black box machine learning based side-channel security evaluation
【24h】

How to fool a black box machine learning based side-channel security evaluation

机译:如何欺骗基于黑匣子的机器学习的侧通道安全评估

获取原文
获取原文并翻译 | 示例

摘要

Machine learning and deep learning algorithms are increasingly considered as potential candidates to perform black box side-channel security evaluations. Inspired by the literature on machine learning security, we put forward that it is easy to conceive implementations for which such black box security evaluations will incorrectly conclude that recovering the key is difficult, while an informed evaluator / adversary will reach the opposite conclusion (i.e., that the device is insecure given the amount of measurements available).
机译:机器学习和深度学习算法越来越多地被视为执行黑匣子侧信道安全评估的潜在候选者。 灵感来自于机器学习安全的文献,我们提出了易于构建的实现这一黑匣子安全评估将错误地得出结论,恢复关键是困难的,而明智的评估员/对手将达到相反的结论(即, 如果可用的测量量),该设备是不安全的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号