首页> 外文期刊>Cryptography and Communications >The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups
【24h】

The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups

机译:零星铃木和简单铃木组的最小对数签名的存在

获取原文
获取原文并翻译 | 示例

摘要

A logarithmic signature for a finite group G is a sequence [A 1,⋯ ,A s ] of subsets of G such that every element g∈G can be uniquely written in the form g=g 1⋯g s , where g i ∈A i , 1≤i≤s. The aim of this paper is proving the existence of an MLS for the Suzuki simple groups S z(22m+1), m>1, when 22m+1+2 m+1+1 or 22m+1−2 m+1+1 are primes. The existence of an MLS for untwisted group G 2(4) and the sporadic Suzuki group S u z are also proved. As a consequence of our results, we prove that the simple groups
机译:有限群G的对数签名是G子集的序列[A 1,⋯,A s],这样每个元素g∈G都可以g = g 1⋯gs的形式唯一地写,其中gi∈Ai ,1≤i≤s。本文的目的是证明当22m + 1 + 2 m + 1 + 1或22m + 1-2 m + 1 +时,铃木简单群S z(22m + 1),m> 1存在MLS 1是素数。还证明了未加捻的基团G 2(4)和偶发的Suzuki基团S u z的MLS的存在。根据我们的结果,我们证明了简单的群体

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号