首页> 外文期刊>Coordination chemistry reviews >Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for solar H_2 production
【24h】

Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for solar H_2 production

机译:聚嗪生色团中的光引发电子收集与用于太阳能H_2生产的减水催化剂偶联

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The efficient conversion of solar energy to transportable, combustible fuels and chemical feedstock remains an important challenge for synthetic chemists. This daunting task requires a delicate balance of light absorption, electron transfer, charge separation, and catalysis of bond breaking and bond forming reactions. This review highlights our recent studies of supramolecular systems coupling Ru(Ⅱ) or Os(Ⅱ) polyazine chromophores with directional charge transfer excited states to catalytically active cis-RhCl_2 or cis-PtCl_2 metal centers. Comparison to similar supramolecules is provided to highlight design constraints. These supramolecules absorb strongly in the low energy visible and exhibit emissive Ru→ BL ~3MLCT excited states. Systems with catalytic Rh(Ⅲ) undergo photoinitiated electron collection (PEC) at the Rh center via Ru or OS→ Rh metal-to-metal charge transfer (MMCT) state, while those with cis-PtCl_2 moieties form charge-separated (CS) excited states. Electrochemical studies provide a means for understanding relative orbital energetics as well as predicting the existence of a charge-separated state or the propensity for photoinitiated electron collection. Emission spectroscopy including time resolved measurements provides support of these interstate dynamics. Detailed kinetic analysis by photophysical studies indicates formation of the~3 MMCT states and~3 CS states occurs via intramolecular electron transfer with rate constants on the order of 10~6-l0~7s~(-1). The complexes are active photocatalysts which absorb lower energy visible light, and provide high quantum efficiency and long term stability for the reduction of water to hydrogen. Catalytic activities are modulated by component modification and system parameters and are often dependent upon driving forces for intramolecular electron transfer, reductive excited state quenching, and component modification.
机译:将太阳能有效地转化为可运输的可燃燃料和化学原料仍然是合成化学家的重要挑战。这项艰巨的任务需要光吸收,电子转移,电荷分离以及催化键断裂和键形成反应之间达到微妙的平衡。这篇综述着重介绍了我们近来研究的超分子系统,其将Ru(Ⅱ)或Os(Ⅱ)聚嗪生色团与定向电荷转移激发态耦合到催化活性的顺式RhCl_2或顺式PtCl_2金属中心。提供与类似超分子的比较以突出设计限制。这些超分子在可见光的低能量中强烈吸收,并表现出Ru→BL〜3MLCT的发射激发态。具有催化Rh(Ⅲ)的系统通过Ru或OS→Rh金属对金属的电荷转移(MMCT)状态在Rh中心进行光引发电子收集(PEC),而具有顺式PtCl_2部分的系统形成电荷分离(CS)兴奋的状态。电化学研究提供了一种理解相对轨道高能学以及预测电荷分离状态或光引发电子收集倾向的手段。包括时间分辨测量在内的发射光谱学为这些州际动力学提供了支持。通过光物理研究的详细动力学分析表明,〜3 MMCT状态和〜3 CS状态通过分子内电子转移发生,速率常数约为10〜6-10〜7s〜(-1)。该络合物是活性光催化剂,其吸收较低能量的可见光,并提供高量子效率和长期稳定性以将水还原为氢。催化活性受组分修饰和系统参数的调节,并且通常取决于分子内电子转移,还原性激发态猝灭和组分修饰的驱动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号