首页> 外文学位 >Earth--abundant water--splitting catalysts coupled to silicon solar cells for solar--to--fuels conversion.
【24h】

Earth--abundant water--splitting catalysts coupled to silicon solar cells for solar--to--fuels conversion.

机译:地球-大量的水-分解催化剂与硅太阳能电池耦合,用于太阳能转化为燃料。

获取原文
获取原文并翻译 | 示例

摘要

Direct solar--to--fuels conversion can be achieved by coupling semiconductors with water--splitting catalysts. A 10% or higher solar to fuels conversion is minimally necessary for the realization of a robust future technology. Many water--splitting devices have been proposed but due to expensive designs and/or materials, none have demonstrated the necessary efficiency at low--cost that is a requisite for large--scale implementation. In this thesis, a modular approach is used to couple water--splitting catalysts with crystalline silicon (c--Si) photovoltaics, with ultimate goal of demonstrating a stand--alone and direct solar-to-fuels water--splitting device comprising all non--precious, technology ready, materials.;Since the oxygen evolution reaction is the key efficiency--limiting step for water--splitting, we first focus on directly interfacing oxygen evolution catalysts with c--Si photovoltaics. Due to the instability of silicon under oxidizing conditions, a protective interface between the PV and OER catalyst is required. This coupling of catalyst to Si semiconductor thus requires optimization of two interfaces: the silicon|protective layer interface; and, the protective layer|catalyst interface. A modular approach allows for the independent optimization and analysis of these two interfaces.;A stand--alone water--splitting device based on c--Si is created by connecting multiple single junction c-Si solar cells in series. Steady--state equivalent circuit analysis allows for a targeted solar--to--fuels efficiency to be designed within a predictive framework for a series--connected c--Si solar cells and earth--abundant water--splitting catalysts operating at neutral pH. Guided by simulation and modeling, a completely modular, stand--alone water--splitting device possessing a 10% SFE is demonstrated. Importantly, the modular approach enables facile characterization and trouble--shooting for each component of the solar water--splitting device. Finally, as direct solar water--splitting is far from a mature technology, alternative concepts are presented for the future design and integration of solar water--splitting devices based on all earth--abundant materials.
机译:通过将半导体与水分解催化剂耦合,可以实现直接的太阳能转化为燃料。为了实现可靠的未来技术,将太阳能转化为燃料的比例至少为10%或更高。已经提出了许多分水装置,但是由于昂贵的设计和/或材料,没有一种装置能够证明以低成本实现必要的效率,而这是大规模实施的必要条件。在本文中,采用模块化方法将水分解催化剂与晶体硅(c-Si)光伏电池耦合,最终目的是展示一种独立的直接将太阳能分解为燃料的水分解装置,该装置包括由于氧气析出反应是水分解的关键效率限制步骤,因此我们首先关注氧气析出催化剂与c-Si光伏电池的直接连接。由于硅在氧化条件下的不稳定性,因此需要PV和OER催化剂之间的保护性界面。因此,催化剂与Si半导体的这种偶联需要两个界面的最优化:硅保护层界面;和硅层界面。并且,保护层界面。模块化方法允许对这两个接口进行独立的优化和分析;通过串联连接多个单结c-Si太阳能电池来创建基于c-Si的独立水分解装置。稳态等效电路分析允许在一个预测框架内设计目标太阳能-燃料效率,该框架用于以串联方式运行的c-Si太阳能电池和地-水-富分分解催化剂中性pH。在仿真和建模的指导下,展示了具有10%SFE的完全模块化,独立的水分解装置。重要的是,模块化方法可轻松实现特征描述和故障排除-针对太阳能分水装置的每个组件进行故障排除。最后,由于直接太阳能分流技术远非成熟,因此提出了一些替代概念,用于未来基于全地球丰富材料的太阳能分流设备的设计和集成。

著录项

  • 作者

    Cox, Casandra R.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physical chemistry.;Alternative Energy.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号