首页> 外文期刊>Control Theory & Applications, IET >Adaptive optimisation of timeout policy for dynamic power management based on semi-Markov control processes
【24h】

Adaptive optimisation of timeout policy for dynamic power management based on semi-Markov control processes

机译:基于半马尔可夫控制过程的动态电源管理超时策略自适应优化

获取原文
获取原文并翻译 | 示例

摘要

Timeout policy is an industry standard for dynamic power management (DPM), and thus is easy and safe to implement in many power-managed systems. The optimisation of timeout policy suffered from the lack of effective analytical model and fell in heuristic previously. This study presents an adaptive optimisation method for timeout DPM policy. First, a semi-Markov control processes model is introduced to formulate the DPM problem of finding timeout policies that minimise power consumption under performance constraints. Under this framework, the equivalence of timeout and stochastic policies on power-performance tradeoff is revealed, and the equivalent relation between these two types of DPM policy is derived. Then, a reinforcement learning algorithm that combines policy gradient estimate and stochastic approximation is proposed for optimising timeout policy online. This algorithm does not depend on any prior knowledge of system parameters, and can achieve a global optimum with less computational cost. Simulation results demonstrate the analytical results and the effectiveness of the proposed algorithm.
机译:超时策略是动态电源管理(DPM)的行业标准,因此可以轻松,安全地在许多电源管理系统中实施。超时策略的优化因缺乏有效的分析模型而受到启发式的影响。这项研究提出了一种针对超时DPM策略的自适应优化方法。首先,引入了半马尔可夫控制过程模型来制定DPM问题,以找到在性能约束下使功耗最小化的超时策略。在此框架下,揭示了功率性能权衡的超时和随机策略的等效性,并推导了这两种DPM策略之间的等效关系。然后,提出了一种结合策略梯度估计和随机逼近的强化学习算法,用于在线优化超时策略。该算法不依赖于系统参数的任何先验知识,并且可以以较少的计算成本实现全局最优。仿真结果证明了该算法的分析结果和有效性。

著录项

  • 来源
    《Control Theory & Applications, IET》 |2010年第10期|p.1945-1958|共14页
  • 作者

    Jiang Q.; Xi H.-S.; Yin B.-Q.;

  • 作者单位

    School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, People's Republic of China. Department of Automation, University of Science and Technology of China, Hefei 230027, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号