首页> 外文期刊>Control Theory & Applications, IET >Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching
【24h】

Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching

机译:完美/不完美前提匹配下基于多项式模糊模型的控制系统的稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

This study presents an improved sum-of-squares (SOS)-based stability analysis result for the polynomial fuzzy-modelbased control system, formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop. Two cases, namely perfect and imperfect premise matching, are considered. Under the perfect premise matching, the polynomial fuzzy model and polynomial fuzzy controller share the same premise membership functions. While different sets of membership functions are employed, it falls into the case of imperfect premise matching. Based on the Lyapunov stability theory, improved SOS-based stability conditions are derived to determine the system stability and facilitate the controller synthesis. Simulation examples are given to verify the stability analysis results and demonstrate the effectiveness of the proposed approach
机译:这项研究提出了改进的基于平方和(SOS)的基于多项式模糊模型的控制系统的稳定性分析结果,该系统由多项式模糊模型和闭环连接的多项式模糊控制器组成。考虑了两种情况,即完美和不完美的前提匹配。在理想前提匹配下,多项式模糊模型和多项式模糊控制器共享相同的前提隶属函数。尽管采用了不同的隶属函数集,但它会落入不完全前提匹配的情况。基于李雅普诺夫稳定性理论,推导了改进的基于SOS的稳定性条件,以确定系统稳定性并促进控制器的综合。仿真实例验证了稳定性分析结果并证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号