首页> 外文期刊>Control Theory & Applications, IET >A nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems
【24h】

A nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems

机译:李亚普诺夫函数的非单调递减松弛法保证离散模糊系统的成本控制。

获取原文
获取原文并翻译 | 示例

摘要

This study presents a nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete Takagi-Sugeno (T-S) fuzzy systems. First, the authors summarise the previous results on a relaxation of nonmonotonically decreasing of Lyapunov functions, and newly derive one lemma based on the previous results. Based on the newly derived lemma, they propose guaranteed cost control design for discrete T-S fuzzy systems. The design conditions can be represented in terms of linear matrix inequalities and provide more relaxed results than the existing approach. A design example is included to demonstrate the relaxation effectiveness of the proposed approach in guaranteed cost control.
机译:这项研究提出了Lyapunov函数的非单调递减松弛方法,以保证离散Takagi-Sugeno(T-S)模糊系统的成本控制。首先,作者总结了关于Lyapunov函数非单调递减的松弛的先前结果,并根据先前的结果重新推导了一个引理。基于新推导的引理,他们提出了离散T-S模糊系统的有保证成本控制设计。设计条件可以用线性矩阵不等式表示,并且比现有方法提供更宽松的结果。包含一个设计示例,以证明所建议方法在保证成本控制方面的松弛效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号