首页> 外文期刊>Control Theory & Applications, IET >Highly efficient parameter estimation algorithms for Hammerstein non-linear systems
【24h】

Highly efficient parameter estimation algorithms for Hammerstein non-linear systems

机译:Hammerstein非线性系统的高效参数估计算法

获取原文
获取原文并翻译 | 示例

摘要

Hammerstein system identification is difficult because there exist the product items of the parameters between the non-linear block and the linear block. This study presents a novel parameter separation based recursive least squares (PS-RLS) identification algorithm for resolving this problem. Its basic idea is to use a linear filter to filter the output data and the noise, and then to obtain two new identification submodels in each of which the output is linear in the corresponding parameter vector. Compared with the over-parametrisation based recursive least squares method, the proposed algorithm can avoid estimating the redundant parameters and has a higher computational efficiency. The simulation results show that the proposed PS-RLS algorithm can generate highly accurate parameter estimates with less computational effort.
机译:Hammerstein系统识别很困难,因为存在非线性块与线性块之间的参数的产品项。本研究提出了一种基于新的基于参数分离的递归量度最小二乘(PS-RLS)识别算法,用于解决这个问题。其基本思想是使用线性滤波器来过滤输出数据和噪声,然后在相应参数向量中的每个新识别子模型中获取两个新的识别子模型。与基于过度参数的递归最小二乘法相比,所提出的算法可以避免估计冗余参数并具有更高的计算效率。仿真结果表明,所提出的PS-RLS算法可以以较少的计算工作产生高精度的参数估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号