首页> 外文期刊>IEEE Transactions on Control Systems Technology >KD trees and Delaunay-based linear interpolation for function learning: a comparison to neural networks with error backpropagation
【24h】

KD trees and Delaunay-based linear interpolation for function learning: a comparison to neural networks with error backpropagation

机译:KD树和基于Delaunay的函数学习线性插值:与带有误差反向传播的神经网络的比较

获取原文
获取原文并翻译 | 示例

摘要

We illustrate how a KD tree data structure with Delaunay triangulation can be used for function learning. The example function is the inverse kinematics of a three degree-of-freedom (DOF) robot. The result can subsequently be used for kinematic control. The KD tree is used to efficiently extract a set number of nearest neighbors to a query point. Delaunay triangulation provides a good criterion for constructing a continuous linear approximation to the true function from neighborhood points of the query. For comparison purposes we solve the same problem with a neural network trained with error backpropagation. We conclude that the KD/Delaunay approach, in comparison to neural networks, can potentially yield a massive reduction in training time and significantly improve function estimate performance.
机译:我们说明了如何将具有Delaunay三角剖分的KD树数据结构用于函数学习。示例功能是三自由度(DOF)机器人的逆运动学。结果可以随后用于运动控制。 KD树用于有效提取一定数量的最接近查询点的邻居。 Delaunay三角剖分为从查询的邻域点构造与真实函数的连续线性近似提供了一个很好的标准。为了进行比较,我们使用经过错误反向传播训练的神经网络解决了相同的问题。我们得出的结论是,与神经网络相比,KD / Delaunay方法可以潜在地大大减少训练时间并显着提高功能估计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号