首页> 外文期刊>IEEE Transactions on Control Systems Technology >Multirate Minimum Variance Control Design and Control Performance Assessment: A Data-Driven Subspace Approach
【24h】

Multirate Minimum Variance Control Design and Control Performance Assessment: A Data-Driven Subspace Approach

机译:多速率最小方差控制设计和控制性能评估:一种数据驱动子空间方法

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses minimum variance control (MVC) design and control performance assessment based on the MVC-benchmark for multirate systems. In particular, a dual-rate system with a fast control updating rate and a slow output sampling rate is considered, which is not uncommon in practice. A lifted model is used to analyze the multirate system in a state-space framework and the lifting technique is applied to derive a subspace equation for multirate systems. From the subspace equation, the multirate MVC law and the algorithm are developed to estimate the multirate MVC-benchmark variance or performance index. The multirate optimal controller is calculated from a set of input/output (I/O) open-loop experimental data and, thus, this approach is data-driven since it does not involve an explicit model. In parallel, the presented MVC-benchmark estimation algorithm requires a set of open-loop experimental data and close-loop routine operating data. No explicit models, namely, transfer function matrices, Markov parameters, or interactor matrices, are needed. This is in contrast to traditional control performance assessment algorithms. The proposed methods are illustrated through a simulation example
机译:本文讨论了基于多速率系统的MVC基准的最小方差控制(MVC)设计和控制性能评估。特别地,考虑具有快速控制更新速率和缓慢输出采样速率的双速率系统,这在实践中并不少见。使用提升模型在状态空间框架中分析多速率系统,并使用提升技术来导出多速率系统的子空间方程。根据子空间方程,开发了多速率MVC律和算法,以估计多速率MVC基准方差或性能指标。多速率最优控制器是根据一组输入/输出(I / O)开环实验数据计算得出的,因此,此方法是数据驱动的,因为它不涉及显式模型。同时,提出的MVC基准估计算法需要一组开环实验数据和闭环常规操作数据。不需要显式模型,即传递函数矩阵,马尔可夫参数或交互器矩阵。这与传统的控制性能评估算法相反。通过仿真实例说明了所提出的方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号