首页> 外文期刊>IEEE Transactions on Control Systems Technology >Cascaded Kalman Filters for Accurate Estimation of Multiple Biases, Dead-Reckoning Navigation, and Full State Feedback Control of Ground Vehicles
【24h】

Cascaded Kalman Filters for Accurate Estimation of Multiple Biases, Dead-Reckoning Navigation, and Full State Feedback Control of Ground Vehicles

机译:级联卡尔曼滤波器,用于精确估计多个偏差,死区导航和地面车辆的全状态反馈控制

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a cascaded estimation algorithm for estimating all of the biases and states for full state feedback and dead reckoning of a farm tractor through short global positioning system (GPS) outages. First, a conventional (one stage) estimation scheme is presented. The single state estimation scheme is shown to have degraded performance in bias state estimation and dead-reckoning due to vehicle model errors. However, the states for position and velocity are not highly coupled to the tractor dynamic states, allowing for separation of the estimators. Therefore, the state estimation algorithms are divided into two cascaded estimators in order to prevent the errors in the vehicle model from corrupting the navigation states. A dead reckoning (or navigation) estimator estimates all of the inertial sensor biases while GPS is available. When GPS is not available, the dead reckoning estimator integrates rate measurements to provide position and heading estimates in order to maintain continuous control of the vehicle through these GPS outages. A second estimator is then used to estimate the additional states needed for full state feedback control algorithms. Bias estimates from the dead reckoning estimator are used to correct the sensor measurement used in the second estimator. An extended kalman filter (EKF) is utilized for each of the estimators. Results are given, showing that the cascaded estimation technique provides better estimation of the vehicle states over a conventional estimation scheme, especially during a GPS outage. Results are also given which verify the ability of the estimation algorithm to estimate all of the system biases and provide continuous control of the tractor through a short GPS outage
机译:本文开发了一种级联估计算法,用于通过短期全球定位系统(GPS)中断来估算农用拖拉机的全状态反馈和航位推算的所有偏差和状态。首先,提出了一种常规的(一级)估计方案。由于车辆模型错误,单状态估计方案显示出在偏置状态估计和死守中的性能下降。但是,位置和速度的状态与拖拉机的动态状态并没有高度相关,因此可以分离估计器。因此,状态估计算法分为两个级联估计器,以防止车辆模型中的错误破坏导航状态。当GPS可用时,航位推算(或导航)估算器会估算所有惯性传感器偏差。当GPS不可用时,航位推算估算器会集成速率测量值以提供位置和航向估算,以便通过这些GPS中断来保持对车辆的连续控制。然后使用第二估计器来估计全状态反馈控制算法所需的其他状态。来自航位推算估计器的偏差估计用于校正第二个估计器中使用的传感器测量。扩展卡尔曼滤波器(EKF)用于每个估计器。结果表明,与传统的估算方案相比,级联估算技术可以更好地估算车辆状态,尤其是在GPS中断期间。还给出了结果,这些结果验证了估算算法估算所有系统偏差的能力,并通过短暂的GPS中断提供了对拖拉机的连续控制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号