首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Linear Parameter Varying Identification of Freeway Traffic Models
【24h】

Linear Parameter Varying Identification of Freeway Traffic Models

机译:高速公路交通模型的线性参数变化辨识

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with linear parameter varying (LPV) modeling and identification of a generic, second-order freeway traffic flow model. A non-conventional technique is proposed to transform the nonlinear freeway traffic flow model into a parameter-dependent form. The resulting exact LPV model is equivalent to the original nonlinear dynamics. Simplification of the nonlinear model gives rise to the introduction of an approximate LPV description. The application of parameter varying identification approaches are made possible by the transformation. Closed-loop predictor-based subspace identification for LPV systems (PBSID LPV) is applied to estimate the affine parameter matrices of the LPV freeway models developed. If the model structure of the original plant is assumed to be known, this paper shows a solution how to estimate LPV model parameters based on the identified model. Parameter-dependent models are identified and validated using real detector measurement data in order to emphasize the applicability of the kernel PBSID LPV methodology. Comparison with traditional nonlinear parametric identification, generally used in traffic identification, is also provided.
机译:本文涉及线性参数变化(LPV)建模和通用的二阶高速公路交通流模型的识别。提出了一种非常规技术将非线性高速公路交通流模型转换为参数依赖形式。生成的精确LPV模型等效于原始非线性动力学。非线性模型的简化引起了近似LPV描述的引入。通过该变换,可以应用参数变化识别方法。 LPV系统的基于闭环预测器的子空间识别(PBSID LPV)用于估计LPV高速公路模型的仿射参数矩阵。如果假定原始工厂的模型结构是已知的,则本文介绍了一种解决方案,该解决方案如何基于已识别的模型来估计LPV模型参数。使用真实的检测器测量数据来识别和验证与参数相关的模型,以便强调核心PBSID LPV方法的适用性。还提供了与通常用于交通量识别的传统非线性参数识别的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号