首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Online Learning-Based Server Provisioning for Electricity Cost Reduction in Data Center
【24h】

Online Learning-Based Server Provisioning for Electricity Cost Reduction in Data Center

机译:基于在线学习的服务器配置,可降低数据中心的电费

获取原文
获取原文并翻译 | 示例

摘要

This brief conceives a learning system for implementing self-optimization-based dynamic server resource provisioning (DSRP) of data centers under deregulated electricity markets. We formulate the DSRP problem as a constrained Markov decision process to minimize the electricity cost subject to a constraint on the queue delay. Instead of applying conventional Q-learning to solve this problem, a postdecision state learning-based DSRP algorithm having fast convergence is proposed by estimating and exploiting the workload arrival distribution. We further discuss the offline optimization of the DSRP problem, which is used as the performance benchmark of the proposed method. Finally, we evaluate the performance of the proposed scheme by using real workloads and electricity prices.
机译:本简介构想了一个学习系统,用于在电力市场放松管制的情况下为数据中心实施基于自我优化的动态服务器资源供应(DSRP)。我们将DSRP问题公式化为受约束的Markov决策过程,以最大程度地减少受排队延迟约束的电力成本。代替应用常规的Q学习来解决此问题,通过估计和利用工作负载到达分布,提出了一种具有快速收敛性的基于决策后状态学习的DSRP算法。我们进一步讨论了DSRP问题的离线优化,该问题被用作所提出方法的性能基准。最后,我们通过使用实际工作量和电价来评估所提出方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号