首页> 外文期刊>IEEE Transactions on Control Systems Technology >Dynamic Minimax Probability Machine-Based Approach for Fault Diagnosis Using Pairwise Discriminate Analysis
【24h】

Dynamic Minimax Probability Machine-Based Approach for Fault Diagnosis Using Pairwise Discriminate Analysis

机译:基于成对判别分析的基于动态最小极大概率机器的故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis plays a key role in the safe and efficient operation of industrial processes. With the emerging big data era, the analytic methods based on probabilistic representations have attracted growing research interest. In this brief, a dynamic minimax probability machine (DMPM) approach based on the framework of probabilistic representations is proposed for diagnosing process faults, without imposing any assumptions on data distributions. In addition, an information criterion is put forward to determine the optimal dimensionality reduction order and time lags of DMPM. The proposed DMPM-based method allows for the enhanced performance of fault diagnosis due to the following advantages over conventional diagnostic approaches. First, DMPM maximizes the pairwise separation probability between each pair of faulty data sets, directly yielding improved discriminatory power in the projected space. Second, the proposed approach is less likely to be influenced by "outlier" classes since its objective function is a summation of probabilities, thereby enabling it to be beneficial for the classification of imbalanced data. Third, DMPM has superior capability on capturing dynamic information from the process data by augmenting observation vectors with time lags. The effectiveness of the proposed approach is demonstrated on the Tennessee Eastman process.
机译:故障诊断在工业过程的安全有效运行中起着关键作用。随着新兴的大数据时代,基于概率表示的分析方法引起了越来越多的研究兴趣。在此简介中,提出了一种基于概率表示框架的动态最小极大概率机器(DMPM)方法,用于诊断过程故障,而无需对数据分布施加任何假设。此外,提出了一种信息准则来确定DMPM的最佳降维顺序和时滞。提出的基于DMPM的方法由于具有以下优于常规诊断方法的优点,因此可以提高故障诊断的性能。首先,DMPM最大化了每对故障数据集之间的成对分离概率,直接在投影空间中产生了更高的鉴别能力。其次,所提出的方法不太可能受“异常值”类别的影响,因为它的目标函数是概率的总和,从而使它对于不平衡数据的分类是有益的。第三,DMPM具有出色的能力,可以通过增加时滞来增加观察向量,从而从过程数据中捕获动态信息。田纳西州伊士曼过程证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号