首页> 外文期刊>Control Systems, IEEE >Differential Algebra for Control Systems Design: Constructive Computation of Canonical Forms
【24h】

Differential Algebra for Control Systems Design: Constructive Computation of Canonical Forms

机译:控制系统设计的微分代数:典型形式的构造性计算

获取原文
获取原文并翻译 | 示例

摘要

Many systems can be represented using polynomial differential equations, particularly in process control, biotechnology, and systems biology [1], [2]. For example, models of chemical and biochemical reaction networks derived using the law of mass action have the form x =Sv(k,x), (1) where x is a vector of concentrations, S is the stoichiometric matrix, and v is a vector of rate expressions formed by multivariate polynomials with real coefficients k . Furthermore, a model containing nonpolynomial nonlinearities can be approximated by such polynomial models as explained in ??Model Approximation.?? The primary aims of differential algebra (DALG) are to study, compute, and structurally describe the solution of a system of polynomial differential equations,f (x,x, ...,x(k)) =0, (2) where f is a polynomial [3]??[6]. Although, in many instances, it may be impossible to symbolically compute the solutions, or these solutions may be difficult to handle due to their size, it is still useful to be able to study and structurally describe the solutions. Often, understanding properties of the solution space and consequently of the equations is all that is required for analysis and control design.
机译:许多系统可以使用多项式微分方程表示,特别是在过程控制,生物技术和系统生物学中[1],[2]。例如,使用质量作用定律得出的化学和生化反应网络模型的形式为x = Sv(k,x),(1)其中x是浓度的向量,S是化学计量矩阵,v是a由具有实系数k的多元多项式形成的比率表达式的向量。此外,包含非多项式非线性的模型可以通过如“模型近似”中所述的多项式模型来近似。微分代数(DALG)的主要目的是研究,计算和从结构上描述多项式微分方程组(f(x,x,...,x(k))= 0,(2) f是多项式[3]≤[6]。尽管在许多情况下,可能无法用符号方式计算解决方案,或者由于解决方案的大小而使这些解决方案可能难以处理,但是能够研究并在结构上描述解决方案仍然很有用。通常,了解解空间以及相应方程式的属性是分析和控制设计所需的全部。

著录项

  • 来源
    《Control Systems, IEEE》 |2013年第2期|52-62|共11页
  • 作者

    Pico-Marco E.;

  • 作者单位

    Department of Systems Engineering and Automation, Universitat Politecnica de Valencia, Valencia, 46022, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号