首页> 外文期刊>Control Systems, IEEE >Bridging a Gap in Applied Kalman Filtering: Estimating Outputs When Measurements Are Correlated with the Process Noise [Focus on Education]
【24h】

Bridging a Gap in Applied Kalman Filtering: Estimating Outputs When Measurements Are Correlated with the Process Noise [Focus on Education]

机译:缩小应用卡尔曼滤波中的差距:当测量值与过程噪声相关时估计输出[关注教育]

获取原文
获取原文并翻译 | 示例

摘要

Traditional statements of the Kalman filter focus on the estimation of states rather than outputs. An output of interest may contain feedthrough from both known inputs u and unknown inputs w, yn=Cxn+Dun+Hwn. It is usually assumed that the posterior state estimate and known inputs are enough to generate the minimum-variance output estimate, given by which is the same equation implemented in most popular control-design toolboxes.
机译:卡尔曼滤波器的传统说法侧重于状态的估计,而不是输出。感兴趣的输出可能包含来自已知输入u和未知输入w的馈通,yn = Cxn + Dun + Hwn。通常假定后验状态估计和已知输入足以生成最小方差输出估计,由此给出的方程与大多数流行的控制设计工具箱中实现的方程相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号