首页> 外文期刊>Control Engineering Practice >Nonlinear soft sensor development for industrial thickeners using domain transfer functional-link neural network
【24h】

Nonlinear soft sensor development for industrial thickeners using domain transfer functional-link neural network

机译:使用域转移功能 - 链接神经网络的工业增稠剂非线性软传感器开发

获取原文
获取原文并翻译 | 示例

摘要

The thickener is used to provide slurries with a stable and satisfactory concentration in the ore dressing plant. To efficiently control an industrial thickener, a soft sensor model should be built first to predict the underflow concentration. In industrial sites, it is usually expensive and time-consuming to collect sufficient high-quality data to develop a data-driven model. In this work, a nonlinear regression method for transfer learning is proposed to solve this problem, which is named domain transfer functional-link neural network (DT-FLNN). The framework of the proposed method includes two stages, and the issue of domain adaption is separately considered at each stage. In the first stage, the activation matrix of the source domain is reconstructed to narrow the distribution difference, and the augmented input matrices of the source and target domains are formulated. Then, the latent variable (LV) based linear regression method for transfer learning is performed at the second stage to train the FLNN of the target domain, and the task of domain adaption is realized by introducing a regularization term. Besides, a systematic method is also presented to determine the hyper-parameters in the proposed DT-FLNN method. The efficiency of the proposed method is evaluated by employing a numerical example and an industrial application. Compared with other nonlinear regression approaches for transfer learning, the proposed method can further increase the prediction accuracy and reduce the influence of noise.
机译:增稠剂用于在矿石敷料厂提供稳定且令人满意的浓度的浆料。为了有效地控制工业增稠剂,应首先构建软传感器模型以预测下溢浓度。在工业部位,收集足够的高质量数据以开发数据驱动模型通常是昂贵且耗时的。在这项工作中,提出了一种用于转移学习的非线性回归方法来解决这个问题,该问题是命名的域传输功能 - 链接神经网络(DT-FLNN)。该方法的框架包括两个阶段,并且在每个阶段分别考虑域适应问题。在第一阶段中,重建源域的激活矩阵以缩小分布差,并且配制源域的增强输入矩阵。然后,在第二阶段执行用于传送学习的基于潜变量(LV)的线性回归方法,以训练目标域的FLNN,并且通过引入正则化术语来实现域的任务。此外,还提出了一种系统方法以确定所提出的DT-FLNN方法中的超参数。通过采用数值示例和工业应用来评估所提出的方法的效率。与其他非线性回归方法相比,该方法可以进一步提高预测精度并降低噪声的影响。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第8期|104853.1-104853.14|共14页
  • 作者单位

    School of Information Science & Engineering Northeastern University Shenyang 110004 China Robert Frederick Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 United States;

    School of Information Science & Engineering Northeastern University Shenyang 110004 China;

    Robert Frederick Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thickener; Soft sensor; Transfer learning; Functional-link neural network; Domain adaptation;

    机译:增稠剂;软传感器;转移学习;功能链接神经网络;域适应;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号