首页> 外文期刊>Control Engineering Practice >A novel similarity metric with application to big process data analytics
【24h】

A novel similarity metric with application to big process data analytics

机译:一种新的相似性度量,应用于大进程数据分析

获取原文
获取原文并翻译 | 示例

摘要

Establishing a quantitative similarity between different datasets has gained prevalence and significance in many applications of process control. In industrial practice, process data are usually multi-dimensional, nonlinearly correlated, and with unknown time-varying distribution, which raise immense challenge for reasonably evaluating similarity. To address this issue, a novel similarity metric based on deep autoencoder (DAE) and the Wasserstein distance is proposed in this paper. Specifically, DAE is used to first capture nonlinear relationship embedded in multivariate process data, and the reconstruction error acts as an indicator to reveal discrepancy between two datasets. After that, the similarity is characterized by evaluating the gap between reconstruction error distributions using Wasserstein distance. The proposed similarity metric has wide applicability in a variety of data analytics tasks including pattern matching, fault diagnosis and mode classifications. Both simulated data and industrial data collected from a real iron-making process are utilized to carry out comprehensive case studies. It is shown that the proposed similarity metric not only enjoys better rationality and sensitivity than generic similarity metrics, but also effectively improves the accuracy of fault diagnosis and mode classification based on big process data.
机译:在不同数据集之间建立定量相似性在过程控制的许多应用中获得了普遍性和重要性。在工业实践中,过程数据通常是多维,非线性相关性,并且具有未知的时变分布,这促进了合理评估的相似性巨大挑战。为了解决这个问题,本文提出了一种基于深度自动化器(DAE)和Wasserstein距离的新型相似度量。具体地,DAE用于首先捕获嵌入在多变量过程数据中的非线性关系,并且重建错误充当指示器以揭示两个数据集之间的差异。之后,相似性通过评估使用Wasserstein距离的重建误差分布之间的差距来表征。所提出的相似性度量在各种数据分析任务中具有广泛的适用性,包括模式匹配,故障诊断和模式分类。从真正的铁制造过程中收集的模拟数据和工业数据都用于进行全面的案例研究。结果表明,所提出的相似度指标不仅享有比通用相似度量更好的合理性和敏感性,而且还有效提高基于大处理数据的故障诊断和模式分类的准确性。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第8期|104843.1-104843.15|共15页
  • 作者

    Zijian Guo; Chao Shang; Hao Ye;

  • 作者单位

    Department of Automation Beijing National Research Center for Information Science and Technology Tsinghua University Beijing 100084 China;

    Department of Automation Beijing National Research Center for Information Science and Technology Tsinghua University Beijing 100084 China;

    Department of Automation Beijing National Research Center for Information Science and Technology Tsinghua University Beijing 100084 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Similarity metric; Deep autoencoder; Wasserstein distance; Unsupervised mode classification; Big process data;

    机译:相似度量;深度自动化器;Wasserstein距离;无监督模式分类;大工艺数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号