首页> 外文期刊>Control Engineering Practice >Data-driven fault diagnosis for heterogeneous chillers using domain adaptation techniques
【24h】

Data-driven fault diagnosis for heterogeneous chillers using domain adaptation techniques

机译:使用域适配技术的数据驱动的异构冷却器的故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Automatic fault diagnosis is becoming increasingly important for assessing a chiller's degradation state and plays a key role in modern maintenance strategies. Data-driven approaches have already become well established for this purpose as they rely on historical data and are therefore more generally applicable compared to their model-based counterparts. Existing chiller fault diagnosis models, however, require labelled data from the target system, which are often not available. Therefore, in this paper, a data-driven fault diagnosis model is proposed that deploys domain adaptation techniques to enable the transfer of knowledge amongst heterogeneous chillers. In particular, the model utilizes transfer component analysis (TCA) and a support vector machine with adapting decision boundaries (SVM-AD) to diagnose faults by aggregating labelled source and unlabelled target domain data in the training phase. Furthermore, it is demonstrated how the model parameters can be tuned to ensure effective classification performance, which is then evaluated by use of fault data stemming from different chiller types. Experimental results show that with the proposed approach faults can be diagnosed with high accuracy for cases when labelled target domain data are not available.
机译:自动故障诊断对于评估冷却器的退化状态并在现代维护策略中发挥关键作用,变得越来越重要。数据驱动方法已经为此目的已经很好地建立,因为它们依赖于历史数据,因此与基于模型的对应物相比更普遍适用。但是,现有的冷却器故障诊断模型需要从目标系统中标记的数据,这些数据通常不可用。因此,在本文中,提出了一种数据驱动的故障诊断模型,用于部署域适配技术,以使异构冷却器之间的知识传输。特别地,该模型利用传输分量分析(TCA)和支持向量机,并通过调整决策边界(SVM-AD)来通过在训练阶段聚合标记的源和未标记的目标域数据来诊断故障。此外,证明了如何调整模型参数以确保有效的分类性能,然后通过使用来自不同冷却器类型的故障数据来评估。实验结果表明,当标记的目标域数据不可用时,可以在拟议的接近故障诊断出于高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号