首页> 外文期刊>Control Engineering Practice >Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes
【24h】

Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes

机译:基于稀疏和歧管的扭结和多变量流程故障检测的基于卷积自动编码器的特征学习

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs) are popular in process monitoring for its remarkable feature extraction from data. However, the increased dimension and correlation of the process variables degrade performance of these DNNs in feature extraction of data. This paper proposes a sparsity and manifold regularized convolutional auto-encoders (SMRCAE) for fault detection of complex multivariate processes. SMRCAE can learn high-level features from the data in an unsupervised way. A sparsity-and-manifold-regularization term is integrated into the learning procedure of SMRCAE, which allows SMRCAE to perform feature selection and capture intrinsic data information. Moreover, a depthwise separable convolution (dsConv) block is used to reduce the computational cost. Two typical fault detection statistics, namely Hotelling's T-squared (T~2) and the squared prediction error (SPE), are developed on the feature space and residual space of SMRCAE, respectively. The performance of SMRCAE is evaluated on an industrial benchmark, i.e., Tennessee Eastman process (TEP) and a real process of industrial conveyor belts. The experimental results show the feasibility of SMRCAE in extracting representative features for process fault detection. The average fault detection rate of SMRCAE is 92.03% and 100% on the two cases, respectively.
机译:深度神经网络(DNN)在流程监测中是流行的,因为其非凡的特征从数据提取。然而,增加的尺寸和过程变量的相关性降低了数据的特征提取中这些DNN的性能。本文提出了一种稀疏和歧管正则化卷积自动编码器(SMRCAE),用于复杂多变量过程的故障检测。 SMRCAE可以以无人监督的方式从数据中学习高级功能。稀疏性和歧管正则化术语被集成到SMRCAE的学习过程中,这允许SMRCAE执行特征选择和捕获内部数据信息。此外,使用深度可分离的卷积(DSCONV)块来降低计算成本。两个典型的故障检测统计数据,即Hotelling的T-Squared(T〜2)和Squared预测误差(SPE)分别在SMRCAE的特征空间和残余空间上开发。 SMRCAE的表现是在工业基准,即田纳西州伊士德曼流程(TEP)和工业输送带的真实过程中的评估。实验结果表明,SMRCAE在提取工艺故障检测的代表特征方面的可行性。 SMRCAE的平均故障检测率分别为92.03%,分别在两种情况下为100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号