首页> 外文期刊>Control Engineering Practice >Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators
【24h】

Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators

机译:多目标增益优化器用于多输入主动干扰抑制控制器:串联弹性执行器的应用

获取原文
获取原文并翻译 | 示例

摘要

Series elastic actuators (SEA) have been gaining increasing popularity as a mechanical drive in contemporary force-controlled robotic manipulators thanks to their ability to infer the applied torque from measurements of the elastic element's deflection. Accurate deflection control is crucial to achieve a desired output torque and, therefore, unmodelled dynamics and dynamic loads can severely compromise force fidelity. Multi-input active disturbance rejection controllers (ADRC) have the ability to estimate such disturbances affecting the plant behaviour and cancel them via an appropriate feedback controller. Thus, they offer a promising control architecture for SEA. ADRC, however, can have upwards of eight tuning parameters for each controlled state. Tuning the controller becomes quite challenging, especially in the context of multi-input, multi-objective control. This paper tackles the problem of ADRC tuning as a multi-parametric and multi-objective optimization approach. An ADRC is developed to regulate the output torque of a multi-input hybrid motor-brake-clutch SEA. The controller has a total of 22 tunable parameters. Point dominance-based nondominated sorting genetic algorithm is used to find the optimal control gains, first considering nine individual control objectives, and then in the context of multi-objective. The algorithm provides a set of potential solutions that highlight the tradeoffs between the control objectives. It is up to the discretion of the designer to select the appropriate solution that best suits a given application. The approach is validated experimentally and the results are compared with a simulated model. Experimental results confirm the suitability of the proposed approach for single and multiple control objectives in a variety of experimental scenarios and show good agreement with the analytical model.
机译:由于能够从弹性元件的测量的测量推断出施加的扭矩的能力,系列弹性执行器(SEA)在现代力控制的机器人操纵器中的机械驱动,这一直受到越来越受欢迎。精确的偏转控制对于实现所需的输出扭矩至关重要,因此,未刻度的动态和动态载荷可能会严重损害力保真度。多输入主动干扰抑制控制器(ADRC)具有估计影响植物行为的这种干扰,并通过适当的反馈控制器取消它们。因此,它们为海上提供了一个有希望的控制架构。然而,ADRC可以为每个受控状态具有八个调谐参数。调整控制器变得非常具有挑战性,尤其是在多输入,多目标控制的背景下。本文解决了ADRC调谐作为多参数和多目标优化方法的问题。开发了ADRC以调节多输入混合动力电机制动 - 离合器海的输出扭矩。控制器总共具有22个可调参数。基于点的基于优势的NondoMinated分类遗传算法用于找到最佳控制增益,首先考虑九个单独的控制目标,然后在多目标的上下文中。该算法提供了一组潜在的解决方案,突出了控制目标之间的权衡。由设计者酌情决定选择最适合给定应用程序的适当解决方案。该方法是通过实验验证的,并将结果与​​模拟模型进行比较。实验结果证实了在各种实验场景中的单一和多种控制目标的适用性,并与分析模型表现出良好的一致性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号