首页> 外文期刊>Control Engineering Practice >An integrated MPC and deep reinforcement learning approach to trams-priority active signal control
【24h】

An integrated MPC and deep reinforcement learning approach to trams-priority active signal control

机译:一种集成的MPC和深度加强学习方法,可动力激活信号控制

获取原文
获取原文并翻译 | 示例

摘要

The problem of active signal priority control for trams is investigated. A combined model predictive control (MPC) and deep reinforcement learning solution is proposed, to minimize stopping of trams at intersections while reducing delay of general vehicles. An efficient new deep reinforcement learning (DRL) framework is introduced to improve the proximal policy optimization with model-based acceleration (PPOMA). The DRL module is strengthened by a model predictive controller, which provides low-precision prediction of the real-time traffic dynamics to improve the learning performance. The problem is modeled as a high-dimension Markov decision process. Dynamic phase sequence is used to improve the flexibility of signal priority control, instead of only optimizing a signal cycle in a fixed phase sequence as in other methods. The optimal traffic signal sequence is obtained by using real-time traffic information collected from vehicular networks. Experiments with SUMO have shown the advantage of our method in comparison with the existing methods.
机译:研究了电车有效信号优先级控制的问题。提出了一种组合的模型预测控制(MPC)和深增强学习解决方案,以最大限度地减少交叉点处的电车停止,同时降低通用车辆的延迟。引入了高效的新深度加强学习(DRL)框架,以改善基于模型的加速度(PPOMA)的近端政策优化。 DRL模块由模型预测控制器加强,该控制器提供实时业务动态的低精度预测,以提高学习性能。问题被建模为高维度马尔可夫决策过程。动态相位序列用于提高信号优先级控制的灵活性,而不是仅在其他方法中优化在固定相位序列中的信号周期。通过使用从车辆网络收集的实时业务信息获得最佳流量信号序列。 Sumo的实验表明了与现有方法相比的方法的优势。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号