首页> 外文期刊>Control Engineering Practice >Robust Bayesian networks for low-quality data modeling and process monitoring applications
【24h】

Robust Bayesian networks for low-quality data modeling and process monitoring applications

机译:鲁棒的贝叶斯网络,适用于低质量的数据建模和过程监控应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel robust Bayesian network is proposed for process modeling with low-quality data. Since unreliable data can cause model parameters to deviate from the real distributions and make network structures unable to characterize the true causalities, data quality feature is utilized to improve the process modeling and monitoring performance. With a predetermined trustworthy center, the data quality measurement results can be evaluated through an exponential function with Mahalanobis distances. The conventional Bayesian network learning algorithms including structure learning and parameter learning are modified by the quality feature in a weighting form, intending to extract useful information and make a reasonable model. The effectiveness of the proposed method is demonstrated through TE benchmark process and a real industrial process.
机译:在本文中,提出了一种新颖的鲁棒贝叶斯网络用于低质量数据的过程建模。由于不可靠的数据可能导致模型参数偏离实际分布,并使网络结构无法描述真实的因果关系,因此利用数据质量功能来改进过程建模和监视性能。在预定的可信赖中心的情况下,可以通过具有马氏距离的指数函数来评估数据质量测量结果。传统的贝叶斯网络学习算法(包括结构学习和参数学习)通过质量特征以加权形式进行修改,旨在提取有用的信息并建立合理的模型。通过TE基准测试过程和实际的工业过程证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号