首页> 外文期刊>Control Engineering Practice >Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes
【24h】

Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes

机译:大型工业过程中基于混合故障特征分解的概率分布故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The performance of fault diagnosis is highly dependent on the representation of fault characteristics. However, for large-scale industrial processes with high-dimension variables, treating the whole process as a single subject will degrade the representation accuracy. It may result from the following reasons: First, fault may disturb a, part of variables rather than the whole process where the fault information may be buried by the unaffected variables. Second, fault characteristics may be hybrid, in which linear fault patterns and nonlinear fault patterns coexist. Therefore, an effective process decomposition mechanism is of great demand to well describe the complex fault characteristics of large-scale processes. This paper proposes a fault characteristics decomposition based probabilistic and distributed fault diagnosis method. First, process is decomposed into different subsets by evaluating fault effects from linear and nonlinear aspects. Based on the decomposition result, distributed diagnosis models are developed where different fault modeling strategies are implemented for different subsets to closely describe fault characteristics. For online application, probabilistic fault diagnosis is implemented at two levels. At the lower level, distributed diagnosis models are adopted to reveal the underlying characteristics of new sample in each subset; at the upper level, the final affiliation can be revealed by integrating the results from each subset in a probabilistic way. The effectiveness of the proposed algorithm is tested by both the numerical example and industrial processes.
机译:故障诊断的性能高度依赖于故障特征的表示。但是,对于具有高维变量的大规模工业过程,将整个过程视为单个主题会降低表示精度。这可能是由于以下原因造成的:首先,故障可能会干扰部分变量,而不是整个过程,在此过程中,故障信息可能会被不受影响的变量所掩盖。其次,故障特征可以是混合的,其中线性故障模式和非线性故障模式共存。因此,迫切需要一种有效的过程分解机制来很好地描述大规模过程的复杂故障特征。提出了一种基于故障特征分解的概率分布故障诊断方法。首先,通过评估线性和非线性方面的故障影响,将过程分解为不同的子集。基于分解结果,开发了分布式诊断模型,其中针对不同的子集实施了不同的故障建模策略,以紧密描述故障特征。对于在线应用,概率故障诊断分为两个级别。在较低的级别,采用分布式诊断模型来揭示每个子集中新样本的基本特征。在较高级别上,可以通过以概率方式集成每个子集的结果来显示最终隶属关系。数值算例和工业过程均验证了所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号