首页> 外文期刊>Control Engineering Practice >A belief rule-based evidence updating method for industrial alarm system design
【24h】

A belief rule-based evidence updating method for industrial alarm system design

机译:基于信念规则的工业报警系统设计证据更新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a belief rule-based evidence updating method for industrial alarm system design, concentrating on handling uncertainties of process variable. Firstly, Sigmoid function-type thresholds are designed to transform the sampled value of a process variable to the corresponding alarm evidence with the form of belief degrees about "Alarm" and "No-alarm". Secondly, a linear updating strategy of evidence is introduced to combine the current alarm evidence with historical evidence such that the fused evidence can provide more accurate alarm decision support. In the process of evidence updating, the belief rule inference is used to determine the combined weights of the current and historical evidence by modeling the reliability degree data of alarm evidence. The proposed method adopts the knowledge and data-driven idea without knowing the precise probabilistic characteristics of the monitored process variable. Hence, in industrial practice it may be more available and flexible than the traditional probability-based design methods. Finally, a typical numerical experiment and an industrial case show the proposed method has better comprehensive performance than some typical probability-based methods, binary classifiers, and the original evidence updating methods.
机译:本文提出了一种基于信念规则的工业报警系统设计证据更新方法,重点是处理过程变量的不确定性。首先,将Sigmoid函数类型的阈值设计为将过程变量的采样值转换为具有有关“警报”和“无警报”的置信度形式的相应警报证据。其次,引入了一种线性的证据更新策略,将当前的警报证据与历史证据相结合,使融合的证据可以提供更准确的警报决策支持。在证据更新过程中,通过对警报证据的可信度数据进行建模,使用信念规则推理来确定当前证据和历史证据的组合权重。所提出的方法采用知识和数据驱动的思想,而不知道所监视的过程变量的精确概率特征。因此,在工业实践中,它可能比传统的基于概率的设计方法更加实用和灵活。最后,通过一个典型的数值实验和一个工业案例表明,该方法具有比一些典型的基于概率的方法,二元分类器和原始证据更新方法更好的综合性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号