首页> 外文期刊>Control Engineering Practice >RD-CNN for driving a 2-D conveyor belt via memory shape alloys
【24h】

RD-CNN for driving a 2-D conveyor belt via memory shape alloys

机译:RD-CNN用于通​​过记忆形状合金驱动二维传送带

获取原文
获取原文并翻译 | 示例

摘要

The paper proposes a two-dimensional conveyor belt controlled by using an analog neural processing approach. A particular Cellular Neural Networks (CNN), named Reaction―Diffusion CNN (RD-CNN), is adopted to generate wave propagation phenomena. These waves can propagate on the conveyor belt plane (an elastic membrane) moving an object on it. The adopted actuator is a shape memory alloy such as nitinol. A neural network identification approach was adopted to characterize the membrane model. It is shown how both thermal and timing nitinol behaviors are very similar to the slow―fast dynamics exhibited by a RD-CNN allowing an appropriate driver system to be designed.
机译:提出了一种使用模拟神经处理方法控制的二维输送带。一个特殊的细胞神经网络(CNN),叫做反应扩散CNN(RD-CNN),被用来产生波传播现象。这些波可以在传送带平面(弹性膜)上传播,从而在其上移动物体。所采用的致动器是诸如镍钛诺的形状记忆合金。采用神经网络识别方法来表征膜模型。结果表明,镍钛合金的热行为和定时行为与RD-CNN展现的慢速动态行为非常相似,从而可以设计合适的驱动器系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号