首页> 外文期刊>Consumer Electronics, IEEE Transactions on >Feature adaptation for robust mobile speech recognition
【24h】

Feature adaptation for robust mobile speech recognition

机译:功能适应性强健的移动语音识别

获取原文
获取原文并翻译 | 示例

摘要

Feature adaptation such as feature space maximum likelihood linear regression (FMLLR) is useful for robust mobile speech recognition. However, as the amount of adaptation data increases, feature adaptation performance becomes saturated quickly due to its limitation of global transformation. To handle this problem, we propose regression tree based FMLLR which can adopt multiple transformations as the amount of adaptation data increases. An experimental result shows that the proposed method reduces the recognition error by 11.8% further for speaker adaptation task and by 13.6% further for noisy environment adaptation task compared to the conventional method.
机译:诸如特征空间最大似然线性回归(FMLLR)之类的特征自适应对于鲁棒的移动语音识别很有用。然而,随着适应数据量的增加,特征适应性能由于其全局转换的局限性而迅速饱和。为了解决这个问题,我们提出了基于回归树的FMLLR,随着适应数据量的增加,该FMLLR可以采用多种变换。实验结果表明,与传统方法相比,该方法对于说话人自适应任务的识别误差进一步降低了11.8%,对于嘈杂环境自适应任务的识别误差进一步降低了13.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号