首页> 外文期刊>IEEE Transactions on Consumer Electronics >HSAJAYA: An Improved Optimization Scheme for Consumer Surveillance Video Synopsis Generation
【24h】

HSAJAYA: An Improved Optimization Scheme for Consumer Surveillance Video Synopsis Generation

机译:Hsajaya:一种改进的消费者监控视频概要优化方案

获取原文
获取原文并翻译 | 示例

摘要

Video Surveillance is an active area of research and provides promising security measures for consumer applications. To ease consumer surveillance investigations, Video Synopsis (VS) serves as a powerful tool to assess hours of video in a shorter retro of time by projecting multiple objects concurrently. The optimization module in VS framework is considered to be a key module, yet to date, only traditional optimization techniques have been addressed for energy minimization. Amongst these, simulated annealing (SA) has been broadly employed to produce global optimal solution without getting trapped in local minima. However, the convergence time of SA is quite high as the next state is chosen randomly to achieve real-time performance. This article presents an improved energy minimization scheme using hybridization of SA and JAYA algorithm to achieve global optimal solution with faster convergence rate. The weights associated with the energy function are computed using analytic hierarchy process (AHP) instead of heuristic selection. From experimental evaluations and analysis, it is seen that the proposed scheme exhibits superior performance to minimize the overall energy cost with lesser computational time. The proposed scheme has a potential to quickly review consumer surveillance video data in a smart and efficient way.
机译:视频监控是一个活跃的研究领域,为消费者应用提供了有希望的安全措施。为了简化消费者监控调查,视频概要(VS)是通过同时投射多个对象来评估较短的时间较短时间的视频的功能强大的工具。 VS框架中的优化模块被认为是迄今为止的键模块,迄今为止,只有传统的优化技术已经解决了能量最小化。其中,模拟退火(SA)已经广泛用于生产全球最佳解决方案而不被困在局部最小值。但是,SA的收敛时间非常高,因为随机选择下一个状态以实现实时性能。本文介绍了使用SA和Jaya算法的杂交来实现更好的能量最小化方案,以实现更快的收敛速度的全局最优解。使用分析层次处理(AHP)而不是启发式选择来计算与能量函数相关联的权重。从实验评估和分析中,可以看出,所提出的方案表现出卓越的性能,以尽量减少计算时间的整体能源成本。该拟议计划有潜力以智能和有效的方式快速审查消费者监控视频数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号