首页> 外文期刊>Constraints >Constraint-directed search for all-interval series
【24h】

Constraint-directed search for all-interval series

机译:全间隔序列的约束定向搜索

获取原文
获取原文并翻译 | 示例

摘要

All-interval series is a standard benchmark problem for constraint satisfaction search. An all-interval series of size n is a permutation of integers [0, n) such that the differences between adjacent integers are a permutation of [1, n). Generating each such all-interval series of size n is an interesting challenge for constraint community. The problem is very difficult in terms of the size of the search space. Different approaches have been used to date to generate all the solutions of AIS but the search space that must be explored still remains huge. In this paper, we present a constraint-directed backtracking-based tree search algorithm that performs efficient lazy checking rather than immediate constraint propagation. Moreover, we prove several key properties of all-interval series that help prune the search space significantly. The reduced search space essentially results into fewer backtracking. We also present scalable parallel versions of our algorithm that can exploit the advantage of having multi-core processors and even multiple computer systems. Our new algorithm generates all the solutions of size up to 27 while a satisfiability-based state-of-the-art approach generates all solutions up to size 24.
机译:全间隔序列是约束满足搜索的标准基准问题。大小为n的所有间隔序列是整数[0,n)的排列,以使相邻整数之间的差是[1,n)的排列。对于约束社区,生成大小为n的每个这样的所有间隔序列都是一个有趣的挑战。就搜索空间的大小而言,这个问题非常困难。迄今为止,已经使用了不同的方法来生成AIS的所有解决方案,但是必须探索的搜索空间仍然很大。在本文中,我们提出了一种基于约束定向回溯的树搜索算法,该算法执行有效的延迟检查,而不是立即进行约束传播。此外,我们证明了全间隔序列的几个关键属性,这些属性可以显着地减少搜索空间。减少的搜索空间实际上导致较少的回溯。我们还介绍了算法的可扩展并行版本,可以利用拥有多核处理器甚至多个计算机系统的优势。我们的新算法可生成最大为27的所有解,而基于可满足性的最新方法可生成最大为24的所有解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号