首页> 外文期刊>Connection Science >Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning
【24h】

Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning

机译:分布式,预测性的动作感知:受生物学启发的模仿和学习机器人体系结构

获取原文
获取原文并翻译 | 示例

摘要

One of the most important abilities for an agent's cognitive development in a social environment is the ability to recognize and imitate actions of others. In this paper we describe a cognitive architecture for action recognition and imitation, and present experiments demonstrating its implementation in robots. Inspired by neuroscientific and psychological data, and adopting a 'simulation theory of mind' approach, the architecture uses the motor systems of the imitator in a dual role, both for generating actions, and for understanding actions when performed by others. It consists of a distributed system of inverse and forward models that uses prediction accuracy as a means to classify demonstrated actions. The architecture is also shown to be capable of learning new composite actions from demonstration.
机译:在社会环境中,行为人的认知发展最重要的能力之一就是认识和模仿他人行为的能力。在本文中,我们描述了一种用于动作识别和模仿的认知架构,并提出了实验来证明其在机器人中的实现。受神经科学和心理数据的启发,并采用“思维模拟理论”方法,该体系结构以双重角色使用了模仿者的运动系统,既可以产生动作,也可以理解他人执行时的动作。它由一个反向和正向模型的分布式系统组成,该系统使用预测准确性作为对已证明动作进行分类的一种手段。该架构还被证明能够从演示中学习新的复合动作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号